Cogrowth for group actions with strongly contracting elements
نویسندگان
چکیده
منابع مشابه
group actions related to non-vanishing elements
we characterize those groups $g$ and vector spaces $v$ such that $v$ is a faithful irreducible $g$-module and such that each $v$ in $v$ is centralized by a $g$-conjugate of a fixed non-identity element of the fitting subgroup $f(g)$ of $g$. we also determine those $v$ and $g$ for which $v$ is a faithful quasi-primitive $g$-module and $f(g)$ has no regular orbit. we do use these to show in ...
متن کاملDistortion Elements in Group actions on surfaces
If G is a finitely generated group with generators {g1, . . . , gj} then an infinite order element f ∈ G is a distortion element of G provided lim inf n→∞ |f|/n = 0, where |f| is the word length of f in the generators. Let S be a closed orientable surface and let Diff(S)0 denote the identity component of the group of C diffeomorphisms of S. Our main result shows that if S has genus at least two...
متن کاملOn the cogrowth of Thompson's group F
We investigate the cogrowth and distribution of geodesics in R. Thompson’s group F .
متن کاملPhase-translation group actions on strongly monotone skew-product semiflows
We establish a convergence property for pseudo-bounded forward orbits of strongly monotone skew-product semiflows with invariant phase-translation group actions. The results are then applied to obtain global convergence of certain chemical reaction networks whose induced systems in reaction coordinates are monotone, as well as the dynamics of certain reaction-diffusion systems, in time-recurren...
متن کاملQuantum Group Actions, Twisting Elements, and Deformations of Algebras
We construct twisting elements for module algebras of restricted two-parameter quantum groups from factors of their R-matrices. We generalize the theory of Giaquinto and Zhang to universal deformation formulas for categories of module algebras and give examples arising from R-matrices of two-parameter quantum groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ergodic Theory and Dynamical Systems
سال: 2018
ISSN: 0143-3857,1469-4417
DOI: 10.1017/etds.2018.123